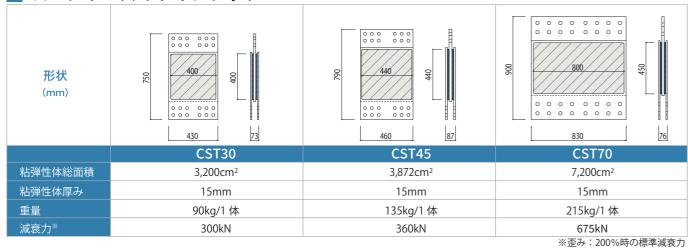
■ **導入事例**(抜粋) 事務所ビルのほか、宿泊施設や学校施設に採用されています。

〈新築〉

(47) >(-7				
建物名称	建物用途	延べ床面積	構造/階数	ユニット数
Kホテル	宿泊施設	5,588m ²	S/12F	CST30:50
Εビル	事務所	1,116 m ²	S/10F(PH1)	CST30:33
Tビル	事務所	5,551 m ²	S/9F(PH1)	CST30:8 CST70:3
W本社ビル	事務所	2,480 m ²	S/4F	CST30:10 CST70:11
T本社ビル	事務所	745 m ²	S/8F	CST30:24
Sビル	事務所	1,272 m ²	S/10F(PH1)	CST30:28 CST70:22
U営業所	事務所	250 m ²	S/2F	CST30:4
M会館	事務所	1,800 m ²	S/6F	CST45:22
M消防署	消防署	746 m ²	S/3F(B1,PH1)	CST20:4 CST30:2
T避難所	避難所	1,450 m ²	SRC+S/3F	CST30:12
D病院	病院	10,773m ²	S/8F	CST30:60 CST70:15
Hプロジェクト	事務所	3,500 m²	S/14F	CST30: 2 CST45: 4 CST70: 18
Rプロジェクト	事務所	1,976 m ²	S/9F	CST30:8
Gビル	事務所	1,900 m²	S/12F	CST30:42 CST70:3


〈耐震補強〉

建物名称	建物用途	延べ床面積	構造/階数	ユニット数
MKホテル	宿泊施設	5,829 m ²	S+SRC/7F	CST30:18
Mホテル	宿泊施設	5,085 m²	S/8F(PH1)	CST30:19 CST70:29
Fホテル	宿泊施設	1,520m²	S/7F(B1,PH1)	CST30:35
M本社建物	事務所	3,350m ²	SRC/6F	CST30:36
Kビル	事務所	1,497 m ²	S/9F(PH1)	CST30:19
Kビル	商業ビル	5,164 m ²	S/7F(B1,PH2)	CST30:11 CST70:26
Yビル	商業ビル	2,165 m ²	RC/7F(B1,PH1)	CST70:5
S高等学校	学校校舎	5,132m ²	RC/4F(B1,PH1)	CST30:144
Kセンター	庁舎 レーダー棟	1,630㎡	RC+S/3F(PH3,塔)	CST30:64

〈揺れ止め〉

L本社建物	事務所	2,362m ²	S/4F	CST30:24
T大学研究棟	研究施設	5,041m²	S/6F	CST30:21

■ CST シリーズのラインナップ

■解析モデル搭載プログラム

プログラム名	会社名
DynamicPRO	ユニオンシステム
SNAP	構造システム
SEIN La DANS	NTT ファシリティーズ総研
Midas i Gen	マイダスアイティジャパン
RESP-D	構造計画研究所

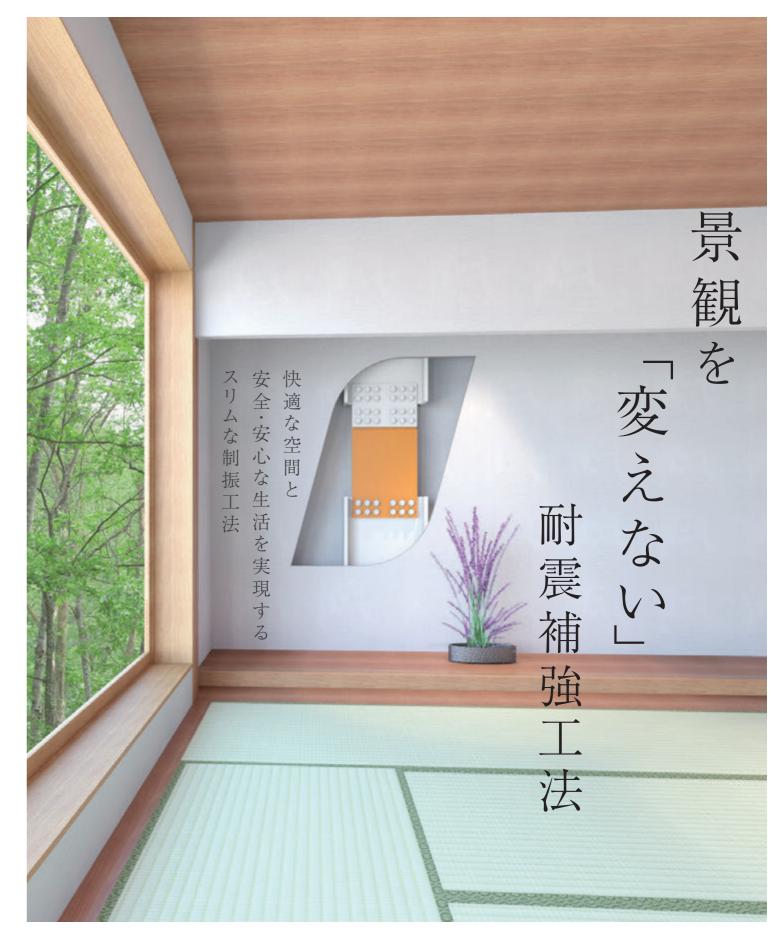
■ 建築技術性能証明

ビューローベリタスジャパン(株)の建築技 術性能証明を 2022 年 1 月 17 日に改訂。 (株)コンステック、(株)長谷エコーポレーショ ン、東急建設㈱の3社共同取得。

正しい診断・たしかな施工

株式会社コンステック

URL https://www.constec.co.jp GOALS Mail info@constec.co.jp コンステックは持続可能な開発目標 (SDGs)を支援しています。



2025年9月

(() コンステック

VES ダンパー工法

ViscoElastic Stud-type damper system

5つの特徴

様々な振動に対応

中小地震から大地震、長周期地震動、 強風や交通振動などの環境振動に制振 効果を発揮。

余震に強い

繰り返し変形に強く、安定性能の持続 により度重なる大地震や頻発する余震 に効果的。

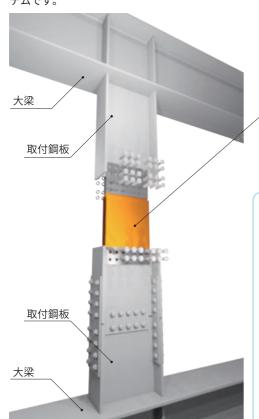
設計自由度が高い

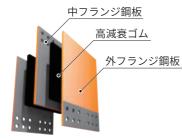
配置自在のコンパクトな仕様とライン ナップで、景観や機能性に配慮した設 計が可能。

高耐久性

優れた耐久性と疲労特性によりメンテ ナンスフリーを実現。橋梁ケーブル用 ダンパーで多数実績のある高減衰ゴム を使用。

高性能ゴム

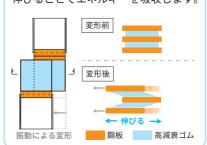

高剛性の高減衰ゴムを使用。温度依存 性・振動数依存性が小さく、安定した 性能を発揮。


VES ダンパー工法

地震・風揺れなどに 有効な制振工法

工法概要

VES ダンパー工法は、ダンパーデバイス「CST シリーズ」、取付鋼板より構成される制振シス テムです。



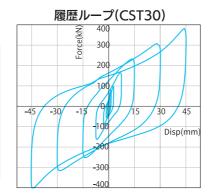
CST シリーズ

高減衰ゴムを鋼板で挟み込んだダン パーデバイス「CST シリーズ」を取付 鋼板に緊結し、上下大梁間に設置する ことで振動エネルギーを吸収します。

メカニズム

高減衰ゴムは、運動エネルギーを熱エ ネルギーに変換し、減衰効果を発揮し ます。建物の変形にあわせて取付鋼板 が移動し、挟まれている高減衰ゴムが 伸びることでエネルギーを吸収します。

性能


等価粘性減衰定数

小変形時から大変形時まで、高いエネルギー吸収 効果を発揮します。揺れを最小限に抑えます。

基準性能				
水平変位(mm)	7.5	15	30	45
歪み γ (%)	50	100 (基準値)	200	300
等価せん断弾性係数 Geq(N/mm²)	1.030	0.758	0.487	0.407

温度20℃ 周波数0.1Hz(正弦波)

0.319 0.331 0.340 0.278

各種制振ダンパーの特徴比較

コンパクトな間柱形状で様々な振動に効果を発揮します。大地震時の交換が不要です。

ダンパー種類	▲ オイルダンパー	VESダンパー (粘弾性ダンパー)	鋼材ダンパー
グラバー主然	オイルが狭い孔から押し出され ることでエネルギーを吸収する。	高減衰ゴムが変形することで エネルギーを吸収する。	鋼材が降伏することでエネル ギーを吸収する。
主な形状	ブレース型	間柱型	ブレース型 間柱型
制御振動	小~大振動	○ 小~大振動	大振動
大地震後の交換	不要	一 不要	▲ 必要

ホテル配置イメージ

客室間仕切り壁内への配置

意匠性を損なわない 目立たない配置

間仕切り壁やドア横に配置可能で、 設置後も動線・景観を変えません。 新築・改修ともに使用できます。

オフィス配置イメージ

VES ダンパー工法による 付加価値

建築保全

高減衰ゴムのエネルギー吸収によって、 構造躯体や間仕切り壁など、大地震時 における建物の損傷を軽減します。

二次災害対策

高減衰ゴムの振動抑制効果により、建 物だけでなく家具などの転倒も軽減す ることで、避難経路を確保し、二次災 害を未然に防ぎます。

安全・安心

地震時の揺れ継続時間の短縮により、 恐怖感を軽減します。また、余震に対 しても、振動抑制効果を発揮し、大地 震後も居住者の安心感を確保します。

BCP対策

建物の損傷や家具などの転倒を軽減す ることにより地震後も建物を利用でき、 大地震後の事業活動を可能にします。

様々な配置イメージ

新築施工写真

VESダンパー配置例

室内を最大限有効利用できる配置を 計画します。